
Abstract. We use the concept of the exchange hole
introduced by Slater to bound the energy of atoms,
molecules, and other systems interacting by Coulomb
forces from below by one-particle Hamiltonians with an
effective screening potential and an exchange hole
around each electron. Interestingly enough the optimal
size of the exchange hole is smaller than Slater proposed:
the best lower bound is obtained when the exchange hole
carries charge 1=2 instead of 1. To highlight the quality
of our estimate we show that the Dirac exchange energy
with a slightly different constant bounds the exchange–
correlation energy from below, an estimate previously
derived by Lieb and later improved by Lieb and Oxford.
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1 Introduction

Slater [1] simplified the Hartree–Fock equations by
introducing a ball around each electron that carries a
unit charge modeling the self-interaction and the
exchange energy of a system of N electrons. This ball,
called an ‘‘exchange hole’’ for brevity, replaces the
exchange term in the Hartree–Fock equations and thus
leads to a substantial simplification. Because of this
importance it has attracted considerable interest since
the pioneering work of Slater. We need to restrict
ourselves for brevity but would like to mention the recent
works of Buijse and Baerends [2], Springborg et al. [3],
Becke and Roussel [4], and the references therein.

The novelty of our result is that it does not only give
an expression for the exchange–correlation energy of
atoms and molecules that becomes exact in the limit of

large (neutral) atoms [5, 6, 7, 8]; it also yields a rigorous
lower bound on the exact energy.

The observation relevant for us is due to Hughes [9,
10]. He noted that the classical Coulomb interaction of
N point particles at positions x1; . . . ; xN with unit charge
can be estimated from below as follows

X

1�n<m�N

1

jxn � xmj
�
XN

n¼1

Z

jy�xnj>R1ðxnÞ

rðyÞdy
jy� xnj

� Dðr; rÞ þ
XN

n¼1

1

2R1ðxnÞ
; ð1Þ

where we use the following notation: given any charge
density, r, in three-dimensional space, R3, we denote its
electrostatic self-energy by Dðr; rÞ, i.e.,

Dðr; rÞ :¼ 1

2

Z

R3

dx

Z

R3

dy
rðxÞrðyÞ
jx� yj : ð2Þ

Here and in the following we assume that the integral
exists (Eq. 2) even when r is replaced by its absolute
value jrj. We also assume that

R
R3 dyjrðyÞj=jx� yj is

finite for almost all x.
Furthermore, we fix any nonnegative density and de-

fineRnðxÞ to be the radius of the smallest ballwith center at
x containing charge n, i.e., the smallest R fulfilling
Z

jy�xj�R

rðyÞdy ¼ n : ð3Þ

We assume, of course, 0 < n <
R

r. For R1=2ðxÞ we write
simply RðxÞ.

Let us note the following:

1. The assumption that the exchange hole contains a unit
charge was strongly influenced by Slater’s heuristic
arguments.

2. Although the inequality is true for any charge density
r, good results will be only obtained if it is picked to
be a realistic density. In fact, using the
Thomas–Fermi density allows us to obtain lower
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bounds that are correct up to second order in Z�1=3

(Scott correction) [6, 7, 8, 9, 10]. It is also possible to
determine r self-consistently, i.e., setting
r :¼ ju1ðxÞj2 þ . . .þ juN ðxÞj2, where the un are the
solutions of the corresponding one-particle problem.

3. The inequality Eq. (1) implies strong simplifications for
the treatment of interacting systems: it allows us to
replace two-particle operators by one-particle opera-
tors, since their ground states are known to be Slater
determinants. It is therefore of utmost importance to
obtain a bound of this type that is as tight as possible.

The purpose of this paper is exactly this, i.e., to improve
the above bound. We will no longer fix the amount of
charge, n, in the exchange hole. Instead we will take it as
a variational parameter. It will turn out that the bound
on the interaction energy does not only simplify for
n ¼ 1=2; it will also improve and be tighter compared
with all other values of n, including 1.

As an application we show in Sect. 3 that the result-
ing bound implies an inequality of Lieb [11] later im-
proved by Lieb and Oxford [12].

2 An optimal lower bound on the Coulomb interaction
via an exchange hole

Our main result is the following inequality:

Theorem 1.
Let r be a charge density with

R
rðyÞdy � 1=2. Then, for

any given number N of points x1; . . . ; xN in space we have

X

1�n<m�N

1

jxn � xmj
�
XN

n¼1

Z

jy�xnj>RnðxnÞ

rðyÞdy
jy� xnj

� Dðr; rÞ þ
XN

n¼1

n� 1=2

RnðxnÞ
: ð4Þ

2. The right-hand side rhs of Eq. (4) has its maximum for
n ¼ 1=2.

We would like to remark that we can replace rðxÞdx
by any signed measure dlðxÞ with the previously men-
tioned requirements on its interaction energy and its
potential. Our main result would still be true. We leave
this to the interested reader.

Our proof depends on a well-known formula that
goes back to Newton [13]: for any spherically symmetric
charge density, q, one has

Z

R3

qðyÞdy
jx� yj ¼

Z1

0

4pr2qðrÞdr
maxfr; jxjg ; ð5Þ

which is easily verified by integration in spherical
coordinates.

Proof 1. It is convenient to introduce a charge density
of total charge one which is smeared out uniformly on a
sphere of radius R centered at y 2 R3:

dlR;yðxÞ :¼ dðjx� yj � RÞdx
4pR2

: ð6Þ

We begin with the crucial observation that the Coulomb
kernel is positive as an operator, i.e.,

Dðl; lÞ � 0 ; ð7Þ
for any complex measure, l, on the three-dimensional
space provided the corresponding integral is absolutely
convergent, i.e.,

R
R3 djljðxÞ

R
R3 djljðyÞjx� yj�1 is finite.

Now, we choose

dlðxÞ :¼ r� dlRnðx1Þ;x1 � . . .� dlRnðxN Þ;xN
:

Rearranging the terms in Eq. (7) gives

2
X

1�n<m�N

D lRnðxnÞ;xn
; lRnðxmÞ;xm

h i
� �Dðr; rÞ

�
XN

n¼1
D lRnðxnÞ;xn

; lRnðxnÞ;xn

h i
þ 2

XN

n¼1
D r; lRnðxnÞ;xn

h i
:

ð8Þ

We evaluate and estimate the occurring expressions. By
explicit computation using Newton’s formula Eq. (5) we
find

2D lRnðxnÞ;xn
; lRnðxmÞ;xm

h i
� jxn � xmj�1 ; ð9Þ

which is also obvious from the physical point of view: it
costs energy to contract the smeared-out unit charge to
a point. This means, that we can estimate the left–hand
side of Eq. (8) from above by

P
1�n<m�N jxn � xmj�1.

Computing, the self-interaction of a unit charge smeared
out on a sphere of radius R yields

DðlR;x; lR;xÞ ¼
1

2R
: ð10Þ

Finally, the summands of the last term of the right side
of Eq. (8) are again computed explicitly:

Dðr; lRnðxÞ;xÞ ¼
1

2

Z

jy�xj>RnðxÞ

rðyÞ
jy� xj dyþ

n
2RnðxÞ

: ð11Þ

Inserting the estimates gives the desired first inequality

X

1�n<m�N

1

jxn � xmj
�
XN

n¼1

Z

jy�xnj>RnðxnÞ

rðyÞ
jy� xnj

dy

� Dðr; rÞ þ
XN

n¼1

n� 1=2

RnðxnÞ
: ð12Þ

Proof 2. To prove the second part of the theorem
we compare the rhs of Eq. (4) at n ¼ 1=2 with all other
values of n ¼ 1=2þ �: we have – assuming � > 0 –

rhsð1=2þ �Þ � rhsð1=2Þ

¼
XN

n¼1

Z

jy�xnj>R1=2þ�ðxnÞ

rðyÞ
jy� xnj

dy
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� Dðr; rÞ þ
XN

n¼1

�

R1=2þ�ðxnÞ

�
XN

n¼1

Z

jy�xnj>R1=2ðxnÞ

rðyÞ
jy� xnj

dyþ Dðr; rÞ

¼ �
XN

n¼1

Z

R1=2ðxnÞ<jy�xnj<R1=2þ�ðxnÞ

rðyÞ
jy� xnj

dy

þ
XN

n¼1

�

R1=2þ�ðxnÞ

� �
XN

n¼1

Z

R1=2ðxnÞ<jy�xnj<R1=2þ�ðxnÞ

rðyÞ
R1=2þ�ðxnÞ

dy

þ
XN

n¼1

�

R1=2þ�ðxnÞ
¼ 0 ; ð13Þ

since the annulus of integration contains exactly charge �
by definition of RnðxÞ.

The case of negative � is analogous.
To emphasize the charge-optimized bound we state it

explicitly:

which holds for arbitrary charge density r fulfilling
merely the general requirements of the Introduction.

3. The correlation bound of Lieb and Oxford

We would like to show that the inequality (Eq. 14)
implies an exchange–correlation bound in terms of the
Dirac exchange term that goes back to Lieb [11] and
Lieb and Oxford [12].

The main technical tool will be the Hardy–Littlewood
maximal function ðM f ÞðxÞ of a function f . It is defined
to be the biggest spherical average of f over balls of
radius R, i.e.,

ðMf ÞðxÞ :¼ sup
R>0

R
jx�yj<R jf ðyÞjdy

4p
3 R3

: ð15Þ

It is a classical fact that the Lp norm of the maximal
function can be estimated in terms of the Lp norm of the
function itself ([14]) . We will need this fact in the case
where p ¼ 4=3. This estimate reads
Z

R3

ðMf ÞðxÞ4=3dx � A4=3
4=3

Z

R3

jf ðxÞj4=3dx : ð16Þ

Note that the best constant A4=3 in this inequality does
not exceed 17:57 (Stein and Strömberg [15]). We also
need an inequality that appears in the spherical sym-
metric case in Lieb [11]:

Lemma 1. If f is an integrable function, then
Z

R3

jf ðxÞj=jxjdx

� 9

2
pðMf Þð0Þ

� �1=3 Z

R3

jf ðxÞjdx

0
B@

1
CA

2=3

: ð17Þ

Proof. Obviously, it is enough to prove the result for
nonnegative spherically symmetric functions. Integrat-
ing by parts we get

Z

R3

f ðxÞ=jxjdx ¼ 1

4p

Z

R3

dxjxj�4
Z

jyj<jxj

dyf ðyÞ

¼ 1

3

Z

jxj<R

dxjxj�1
Z

jyj<jxj

dyf ðyÞ4p
3
jxj3

þ 1

4p

Z

jxj>R

dxjxj�4
Z

jyj<jxj

dyf ðyÞ

� 2p
3

R2ðMf Þð0Þ þ
Z

R3

dyf ðyÞ=R : ð18Þ

Picking R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
R

R3 dyf ðyÞ=½4pðMf Þð0Þ�
q

yields the de-
sired inequality.

Lemma 2. Let r be as required in the Introduction.
Then

Z

jx�yj�RðxÞ

dy
rðyÞ
jx� yj �

ð9pÞ1=3

2
ðMrÞðxÞ1=3 : ð19Þ

Proof. We set rxðyÞ :¼ rðxþ yÞvRðxÞðyÞ, where vRðxÞðyÞ is
1, if jyj < RðxÞ and vanishes otherwise. We apply lemma
1 with f ¼ rx and get

Z

jy�xj<RðxÞ

dy
rðyÞ
jx� yj ¼

Z

R3

dy
rxðyÞ
jyj

� 9

2
pðMrxÞð0Þ

� �1=3 Z

R3

jrxðyÞjdy

0
B@

1
CA

2=3

¼ 9

2
pðMrÞðxÞ

� �1=3
1

2

� �2=3

; ð20Þ

where the last inequality holds because of the definition
of RðxÞ. The last term of the chain of inequalities is easily
seen to give the claim.

Assume w to be a normalized wave function of N
particles with spin q each, i.e., w depends on the vari-

X

1�n<m�N

1

jxn � xmj
�
XN

n¼1

Z

jy�xnj>RðxnÞ

rðyÞdy
jy� xnj

� Dðr; rÞ ; ð14Þ
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ables ~x :¼ ðx1; ; :::; xN Þ; where each xn ¼ ðxn; snÞ is a
space–spin variable, i.e.,
Z
jwð~xÞj2d~x :¼

Z

R3

dx1
Xq

s1¼1
. . .

Z

R3

dxN

Xq

sN¼1
jwð~xÞj2 ¼ 1 :

We do not assume that w fulfills any symmetry
requirements but we do assume that

Iw :¼
X

1�n<m�N

Z
d~x
jwð~xÞj2

jxn � xmj
<1

and that the one-particle density, qw, of the state w is
integrable when raised to the power 4=3, i.e.,R

q4=3
w <1. Note that all these requirements are natu-

rally fulfilled for quantum states with finite kinetic
energy. Then

Iw � 2Dðqw; rÞ � Dðr; rÞ

� L
Z

R3

qwðxÞ4=3dx

0

B@

1

CA

3=4 Z

R3

rðxÞ4=3dx

0

B@

1

CA

1=4

; ð21Þ

with L ¼ ð9pÞ1=3A4=9
4=3=2. (Using the upper bound of Stein

and Strömberg on A4=3 shows that L � 3:96.) Picking
r ¼ qw yields the inequality of Lieb [11] and Lieb and
Oxford [12]

Iw � Dðqw; qwÞ � L
Z

R3

qwðxÞ4=3dx : ð22Þ

Note that Lieb [11] estimated L as 8:52 using also the
maximal inequality and Lieb and Oxford [12] estimated
L as 1:68 using a somewhat more involved but elemen-
tary technique. That our result implies this inequality
with a relatively good constant highlights the quality of
our exchange–correlation estimate using the idea of the
exchange hole.

We start the proof of the inequality in Eq. (21) by
multiplying both sides of the inequality in Eq. (14) by
jwð~xÞj2 and integrate and sum over all space-spin vari-
ables:

Iw � 2Dðqw; rÞ �
Z

R3

dxqwðxÞ
Z

jx�yj<RðxÞ

rðyÞdy
jx� yj � Dðr; rÞ

� 2Dðqw; rÞ � Dðr; rÞ

� ð9pÞ
1=3

2

Z

R3

qwðxÞðMrÞðxÞ1=3dx ; ð23Þ

where we have used Eq. (19) of lemma 2. Applying the
Hölder inequality followed by the maximal inequality
Eq. (16) gives

Iw � 2Dðqw; rÞ � Dðr; rÞ

� ð9pÞ
1=3

2

Z

R3

q4=3
w

0
B@

1
CA

3=4 Z

R3

ðMrÞ4=3

0
B@

1
CA

1=4

� 2Dðqw; rÞ � Dðr; rÞ

� ð9pÞ
1=3

2
A4=9
4=3

Z

R3

q4=3
w

0

B@

1

CA

3=4 Z

R3

r4=3

0

B@

1

CA

1=4

; ð24Þ

which proves the inequality Eq. (21).

Approximate density functional

The inequality in Eq. (14) reduces the interacting N -
particle problem to an approximate noninteracting one
whose energy is a strict lower bound on the exact
energy. Picking, in addition the occuring arbitrary
density r appropriately, allows us to construct a
Kohn-Sham type density functional for the ground,
state energy which is not only an approximation but
gives a rigorous lower bound: we denote the Kohn-
Sham orbitals of the N electrons by /1; :::;/N . Next
we pick

rðxÞ :¼ qðxÞ :¼ j/1ðxÞj2 þ � � � þ j/N ðxÞj2 :

The approximate Kohn-Sham functional becomes in this
case

EKS ½/1; . . . ;/N � :¼
XN

m¼1

Z
jr/mj2 þ Dðq; qÞ

�
Z

dx

Z
dyjy�xj<RðxÞ

qðxÞqðyÞ
jx� yj þ

Z
V ðxÞqðxÞdx ;

where V is the external electric potential. The corre-
sponding Kohn–Sham equations are

�D/m þ V ðxÞ þ
Z

jx�yj>RðxÞ

qðyÞdy
jx� yj

0
B@

1
CA/m ¼ �m/m :
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